Continental Dialogue on Non-Native Forest Insects and Diseases, Nov 3-4, 2014, Charlotte, NC

NETWORK MODELING TO ASSESS RISK OF FOREST PEST SPREAD VIA CAMPER TRAVEL (AND FIREWOOD TRANSPORT)

Frank H. Koch

USDA Forest Service, Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC

Denys Yemshanov

Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, Sault Ste. Marie, ON

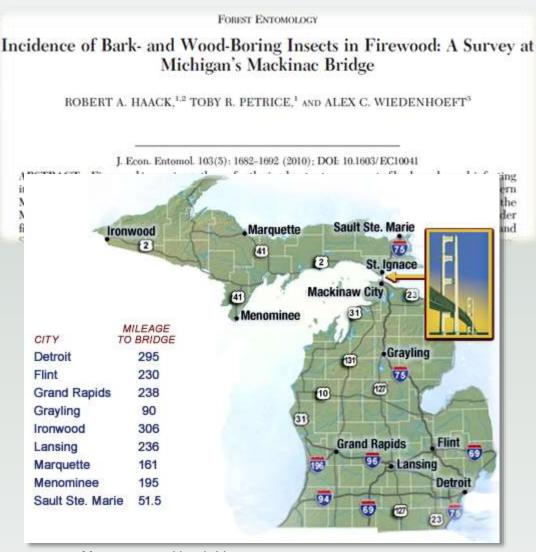
Robert A. Haack

USDA Forest Service, Northern Research Station, East Lansing, MI

Roger D. Magarey

NC State University, Center for Integrated Pest Management, Raleigh, NC

Firewood and Forest Pests


- Widespread concern in forest health community regarding accidental transport of forest pests in firewood
- Most states now have some restrictions on firewood movement, in some cases with penalties for violations

Images: Florida Dept of Ag and Consumer Services; New York Dept of Environmental Conservation; Iowa Dept of Natural Resources; USDA-FS, R9, Allegheny NF

Firewood and Forest Pests: Real Issue?

- Haack et al. (2010)
 looked at firewood
 surrendered at
 Michigan's Mackinac
 Bridge (due to EAB
 quarantine)
 - 16% of firewood was from out of state
 - 23% infested with live borers
 - Another 41% had evidence of previous borer infestation

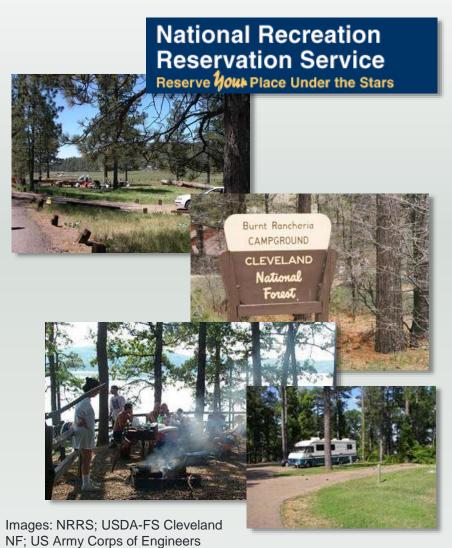
Map: www.mackinacbridge.org

Firewood and Forest Pests: Real Issue?

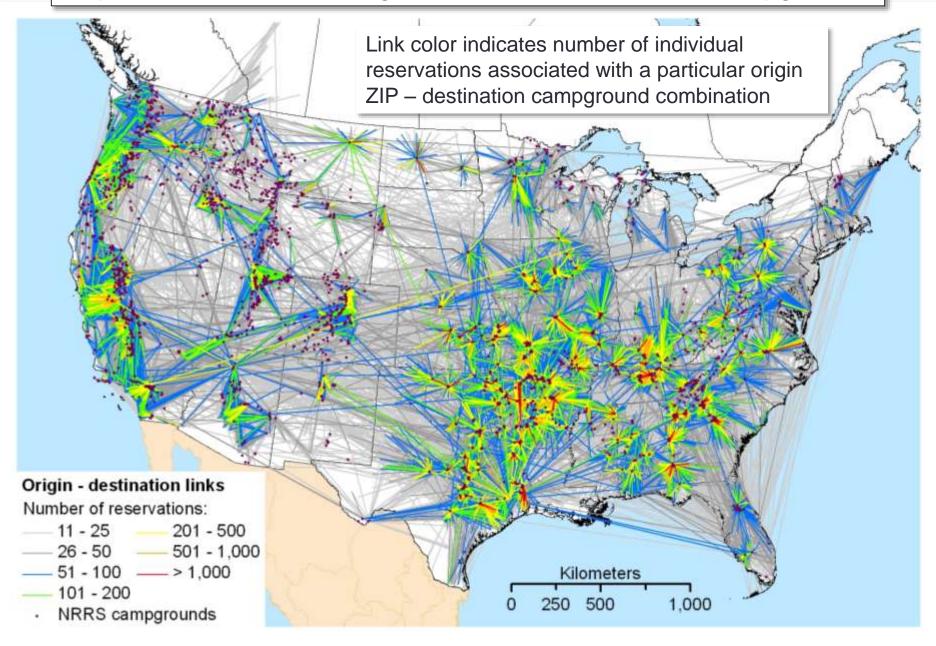
Arboricanure & Urban Porestry 2011. 57(3): 120-136

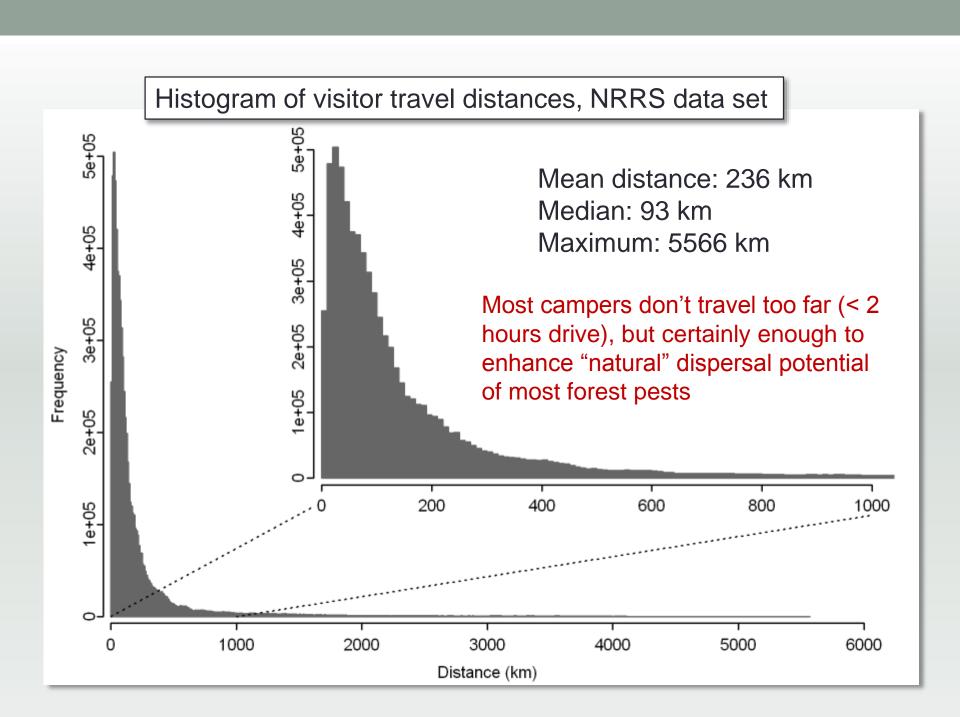
Firewood Transport by National and State Park Campers: A Risk for Native or Exotic Tree Pest Movement

W.R. Jacobi, B.A. Goodrich, and C.M. Cleaver


- Jacobi et al. (2011) reported results of camper surveys in 7
 Colorado state parks, 13 National Parks in AZ, CO, NV, UT, WY
 - 66% of CO state park campers brought firewood, only 4% from out-of-state
 - 60% of Nat'l Park campers brought firewood, 39% from out-of-state
 - 41% out-of-state firewood from non-adjacent states
 - 53% of surveyed firewood had evidence of previous insect presence, 39% fungal infestation
- An assortment of camper surveys from other states (e.g., WI, MN, VT) tell similar stories

Genuine Risk, But How to Assess?

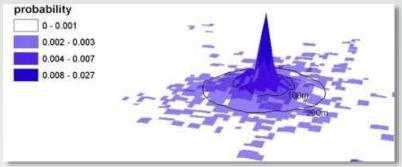

- Appears to be some risk of forest pest spread via camper travel and firewood transport
 - ...although actual cases of pest spread in firewood only documented anecdotally
- Detailed (and broad-scaled) data on firewood transport and usage by campers are lacking
- Possible solution: Explore the travel behavior of campers in general, rather than their use of firewood
 - Can use <u>camper reservation records</u> to do this


One Data Source...

- National Recreation Reservation Service (NRRS)
 - Online reservations system for US federal camping facilities (Forest Service, National Park Service, BLM, others)
- NRRS data for 1/2004 9/2009
 - Approx. 7.2 million individual camper reservations
 - Including visitors from Canada
 - More than 2500 campground locations throughout U.S.
 - Each reservation record represents a "link" between a camper's origin ZIP code and a destination campground

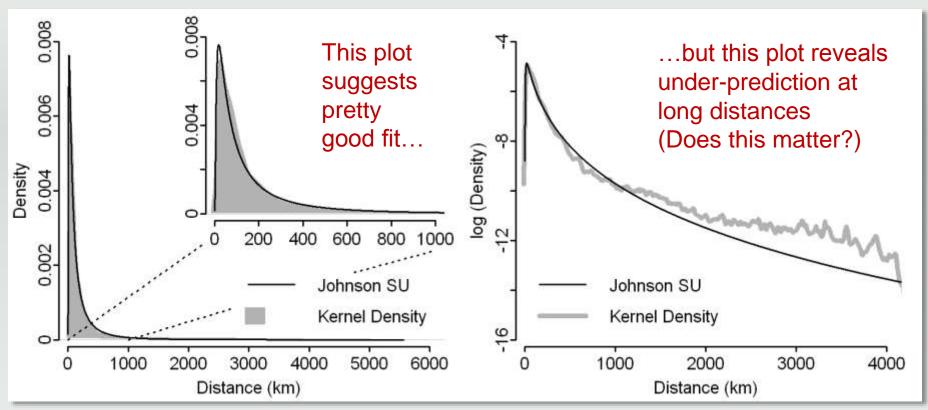
Map of links from visitor origin ZIP codes to destination campgrounds

Koch et al. (2012): Preliminary Analysis of NRRS Data


Dispersal of Invasive Forest Insects via Recreational Firewood: A Quantitative Analysis

FRANK H. KOCH, 1,2 DENYS YEMSHANOV, 3 ROGER D. MAGAREY, 4 AND WILLIAM D. SMITH1

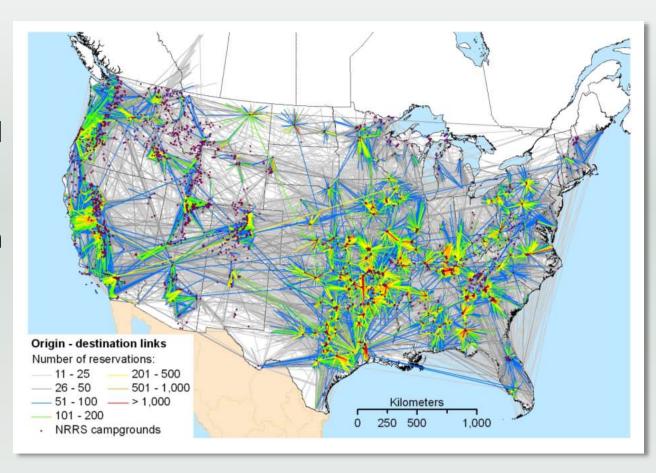
J. Econ. Entomol. 105(2): 438-450 (2012); DOI: http://dx.doi.org/10.1603/EC11270
ARSTRACT Represtignal transl is a recognized vector for the enread of inverse energies in N.


 In this paper, attempted to fit the NRRS distance data with theoretical distributions in order to develop <u>dispersal kernels</u> we could use in modeling humanmediated spread of forest insects

Distribution Fitting

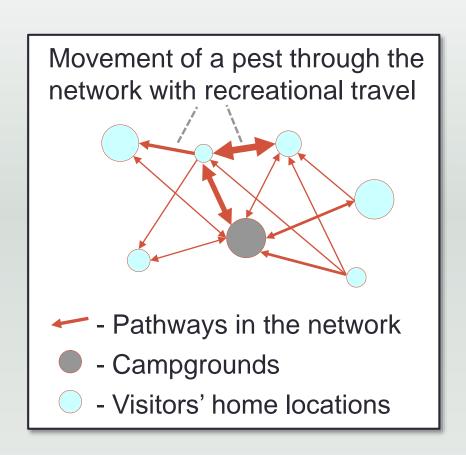
 Best-fitting distribution: unbounded Johnson (SU); lognormal very similar

Plot of density vs. travel distance


Plot of the logarithm of density vs. travel distance

Koch et al. (2012): Key Points

- Can derive a reasonable distribution (kernel) to simulate longdistance "recreational" dispersal for use in pest spread models
- Relating the NRRS data to firewood...based on the small number of firewood inspections and usage surveys from across U.S. ...
 - 30-40% of campers bring firewood from home (or other distant locations)
 - If assume ~20% of firewood is infested with live borers, then 6-10% of campground visits involve movement of infested firewood
 - Accounting for factors such as burning of firewood before pests can escape, seems reasonable that 3-5% of campground visits pose a potential risk of firewood-facilitated dispersal of forest pests
- Even if a much lower percentage, millions of campground visits every year
 - 1.2 million per year in the NRRS data alone
- Current concerns about risk of pest spread due to firewood appear to be justified


Limitation of "Kernel Approach"

- Recall map from earlier...
- Human-mediated dispersal follows specific routes and has a certain set of specific destinations
- In short, it's a network

Network-Based Approach As Alternative

- What if we applied the NRRS data in a network setting?
 - Visitors' home and campgrounds = two sets of networked nodes
 - Strength of pathways defined by number of campers traveling along them
- Can use this "pathway model" to identify probable origins and destinations

Koch et al. (2014): Network Modeling with NRRS Data

OPEN ACCESS Freely available online

Using a Network Model to Assess Risk of Forest Pest Spread via Recreational Travel

Frank H. Koch^{1*}, Denys Yemshanov², Robert A. Haack³, Roger D. Magarey⁴

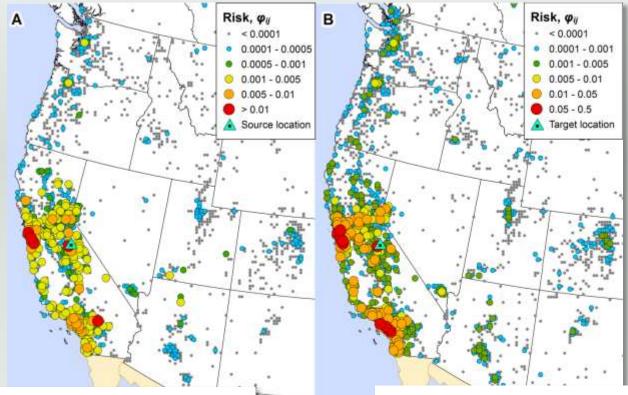
1 United States Department of Agriculture, Forest Service, Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park,

- As with Koch et al. (2012), focused on bark- and wood-boring insects that might use firewood as a host
- Key analytical steps:
 - Aggregating NRRS data to set of unique locations (i.e., map cells)
 - Developing pathway transmission matrix with approx. 15000 x 15000 elements
 - i.e., pairs of 15-km map cells representing origin and destination locations
 - Transmission matrix served as the foundation of a bi-directional model
 - Undertaking pathway simulations from each location in this network

Koch et al. (2014): Network Modeling with NRRS Data

OPEN ACCESS Freely available online

Using a Network Model to Assess Risk of Forest Pest Spread via Recreational Travel


Frank H. Koch¹*, Denys Yemshanov², Robert A. Haack³, Roger D. Magarey⁴

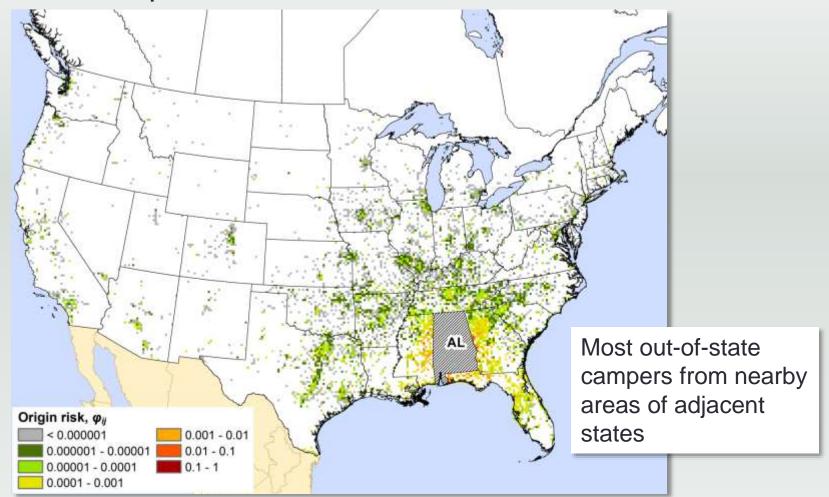
1 United States Department of Agriculture, Forest Service, Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park,

- Couple of key assumptions:
 - Only included reservations where both the visitor's origin location and the destination campground were in the late spring-early summer period when the visit occurred
 - Presumes that risk of successful borer invasion is greatest during time when adult insects emerge from host
 - Assumed that 15% of firewood-carrying campers brought unused firewood home with them (based on WI survey)

Network Model Application

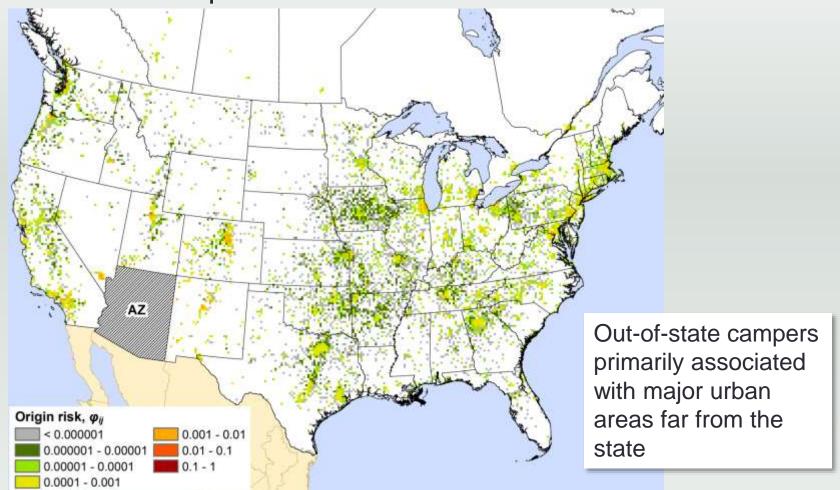
- Forward and reverse pathway analysis
 - Yosemite Valley Area (in Yosemite NP) as hypothetical example

Forward analysis: locations most at risk of receiving forest pest from Yosemite Valley


Reverse analysis: likeliest source locations if Yosemite Valley found to be infested

But How Best to Summarize to Model Results?

- Much regulatory decision making takes place at state or provincial level
 - For example, implementation of firewood movement restrictions
- So, for each US state (and Canadian province), we generated a map that sums – for each 15-km map cell outside the state of interest – the probabilities for all pathways between that cell and any destination cell within the target state
 - Maps depict most likely out-of-state origin (or source) locations for the target state


Two Main Patterns of Origin Risk...

First example: Alabama

Two Main Patterns of Origin Risk...

Second example: Arizona

Koch et al. (2014): Key Points

- A few states and the Canadian provinces show aspects of both patterns
- Regardless, output maps can guide deployment of resources for surveillance, firewood inspections, or other activities
- No single response strategy is appropriate for all states (or provinces)
 - If most out-of-state campers are traveling from distant areas, could deploy resources at key points along major roads, i.e., "bottlenecks" of camper movement
 - If most out-of-state campers are from nearby areas, they may have many feasible travel routes, so more widely distributed deployment may be necessary

Koch et al. (2014): Key Points

Some caveats:

- We only analyzed federal campgrounds, and patterns almost certainly differ for state or private facilities
 - We're currently working on this using reservations data from states/provinces in the Great Lakes region
- More important caveat is that relationship between campground travel and firewood transport has only been defined tentatively
 - Our data only covered camper travel, NOT firewood
 - We haven't truly quantified risk, merely represented it in relative terms
- Some unanswered questions:
 - Does proportion of campers carrying firewood change with distance?
 (Jacobi et al. 2011 study suggests this is true)
 - Even if 3-5% of all camping trips involve infested firewood, how much of this represents a meaningful spread risk?
 - Chance carrying an invasive, non-native pest?
 - Populations sufficient for establishment?

So, What Next?

- We aren't quite "there" in terms of quantifying firewood risk
- However, research can still guide how or where to prioritize <u>public awareness</u> / <u>outreach</u> activities

Images: californiaagriculture.ucanr.org; catscorner.mlbblogs.com

Some Recommendations

- Engage others with a clear, simple message
 - Don't move firewood more than 50 miles
 - Buy and burn your firewood locally
 - Positive message DO, not DON'T might be easier to promote
- Encourage and aid development of clear firewood policies for parks, campgrounds
- Promote "wood swap" programs and the like
- Communicate with the public, and each other, regarding emerging forest pest problems!

Acknowledgements

- Judy Pasek (ret.) & Dave Kowalski USDA APHIS-PPQ, Fort Collins CO (NRRS data)
- Kirsty Wilson & Marty Siltanen Canadian Forest Service
- John Coulston and Jeff Prestemon (USDA-FS), and anonymous reviewers