

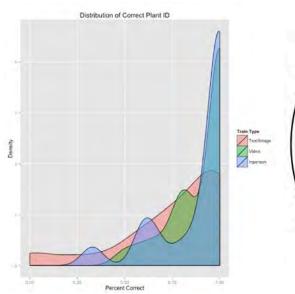
I came across 3 trees in my neighborhood...

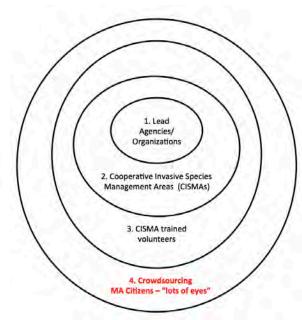
There were lots of small Dime-sized holes in the trees!

The upper foliage was Fall colored and it is July...

I couldn't see any beetles, but these are the signs of ALB!

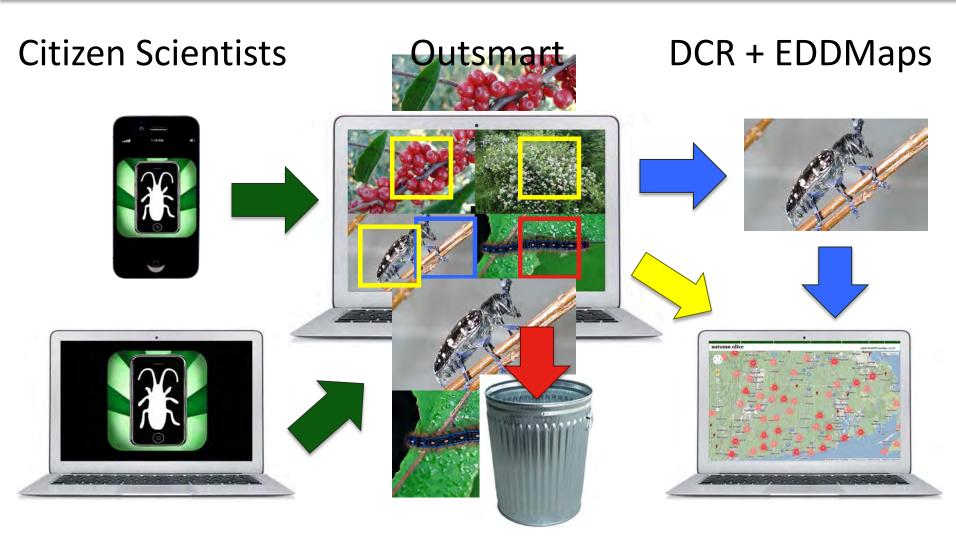
Outsmart Invasive Species Project





Invasive Species...

- Outreach
- Research
- Collaborative environmental management



data flow

research

Compound Incentives

Incentive		i c.							100
Category	Respondent #	4	6	5	3	8	2	9	1
	Rated "Very important"								-
Learning	To improve plant and insect identification skills	x		×	14.1	-	×	x	
Learning	To learn more about invasive species	×	1 12	22	x	-	x	×	
Public good - "helping the cause"	To keep track of invasive species sightings	x	x	×	x	x	x	x	
Public good - "helping the cause"	To protect biodiversity	x	x	×	x	x	×	12	
Personal need	To protect my property	x					x		
Public good - "helping the cause"	To prevent outbreaks of destructive species	x	×	×	x	x	×	x	
Personal need	To connect with others interested in protecting biodiversity	x				J.U	x		j
Public good - "helping the cause"	To contribute data to scientific research	x	x	x		x	x	pel	x
Cost to participate	Because the Outsmart Invasive Species app is free	x		16	P	7	x		x
Fine-scaled Task Granularity	Because it is easy to participate	x	Þ.	x	T.		x		x
Fine-scaled Task Granularity	Because there is no formal time commitment	x		×	17		×		x
Paid	Because it is useful for my job	E	ĮĒ.	×	FI	=	171	12.7	
Paid	Because I can take part on the job		x	×	H		Ŧ	-	
Enjoyment	Because I enjoy spending time outdoors	x	7 *		×	x	×		
Learning	Because it is relevant to my field of study	×	×		121	x		12 21	
Enjoyment	Because it seemed like fun	x	22.	PEI	x	LETT	x	URT	X
Paid	Because there is potential to win a prize	11	Ī	171		71	1	17.31	
	# Submissions	32	5	4	3	3	2	2	1
	Incentive count totals	15	F	_	_		13		5

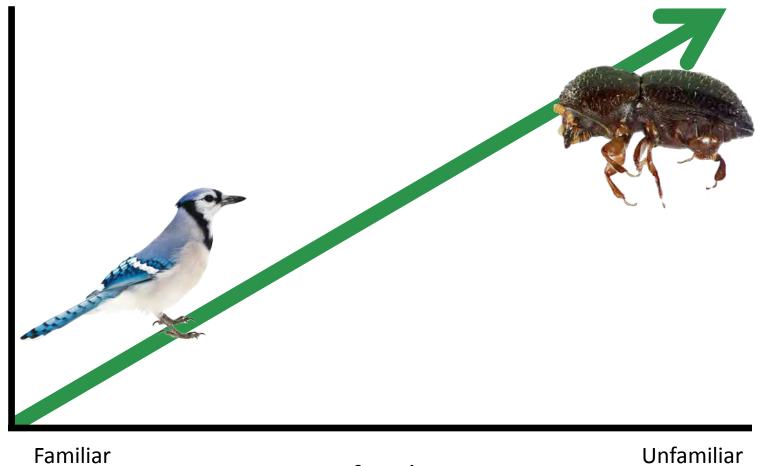
Training Methods

research

Compound Incentives

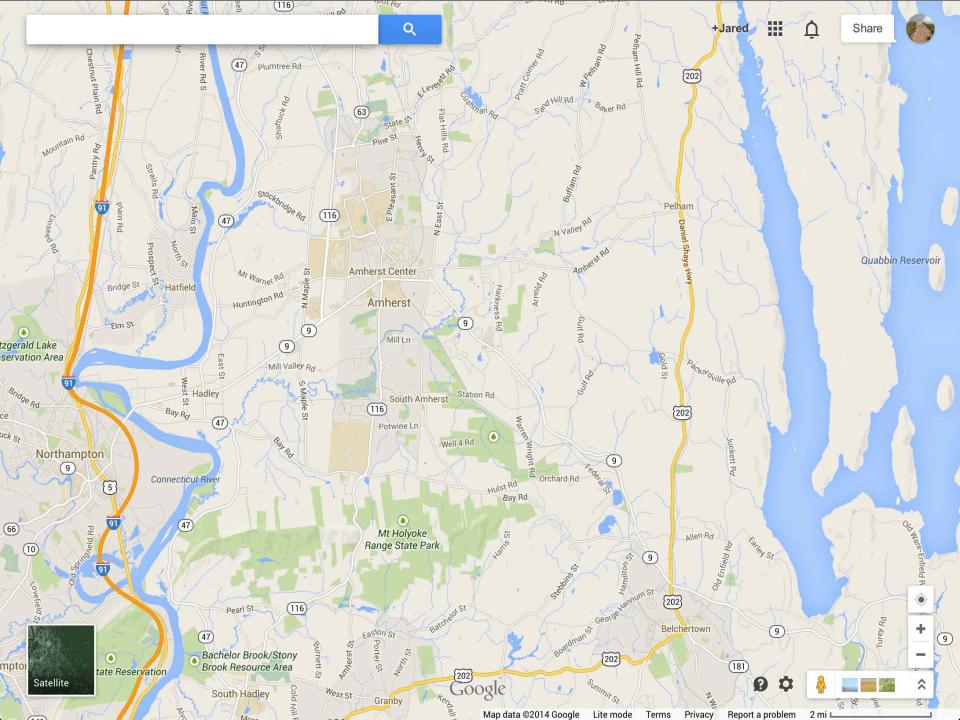
Incentive									
Category	Respondent #	4	6		5	3 8	3 2	9	
	Rated "Very important"								
	To improve plant and insect								
Learning	identification skills	X		×			X	X	
	To learn more about								
Learning	invasive species	Х			X		X	X	
Public good -	To keep track of invasive								
"helping the cause"	species sightings	X	X	Х	X	X	X	X	
Public good -									
"helping the cause"	To protect biodiversity	X	X	X	X	X	X	-	
Personal need	To protect my property	X					×		
Public good -	To prevent outbreaks of								
"helping the cause"	destructive species	X	X	X	X	X	X	×	
	To connect with others								
Demondered	interested in protecting								
Personal need	biodiversity To contribute data to	X		-	-	-	×		
Public good - "helping the cause"	scientific research								
neiping the cause	Because the Outsmart	X	Х	X	-	×	X		X
Cost to participate	Invasive Species app is free						×		X
Fine-scaled Task	Because it is easy to	A		-	+	+	A		A
Granularity	participate	x		x			x		X
Fine-scaled Task	Because there is no formal	^		^	-		^		^
Granularity	time commitment	×		×			×		×
Ordinalarity	Because it is useful for my			-	_	_	-		^
Paid	job			X					
	Because I can take part on								
Paid	the job		X	×					
	Because I enjoy spending								
Enjoyment	time outdoors	X			X	×	×		
	Because it is relevant to my								
Learning	field of study	X	X			×			
Enjoyment	Because it seemed like fun	X			X		X		Х
	Because there is potential to								
Paid	win a prize								
	# Submissions	32	5	-	4	3 3		2	1
	Incentive count totals	15	6		9	6 6	13	4	

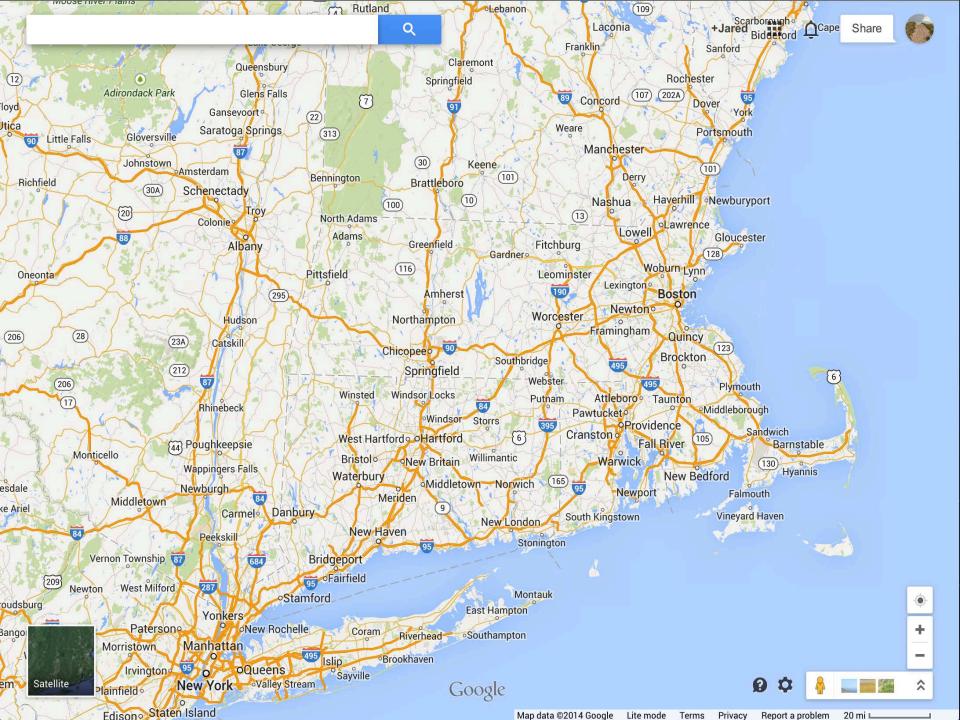
Training Methods

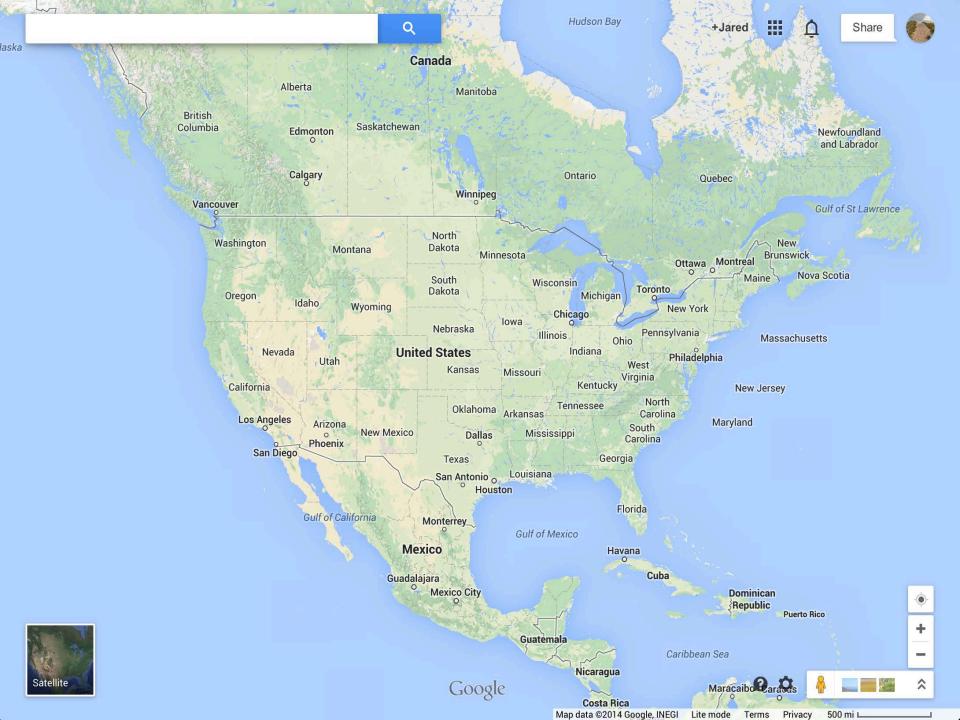


issues

Complex Training Sophistication


Simple



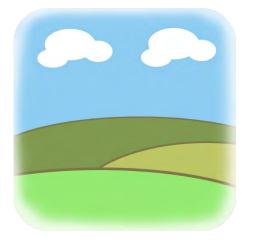

Unfamiliarity

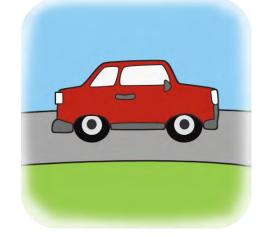
Unfamiliar

info flow

training

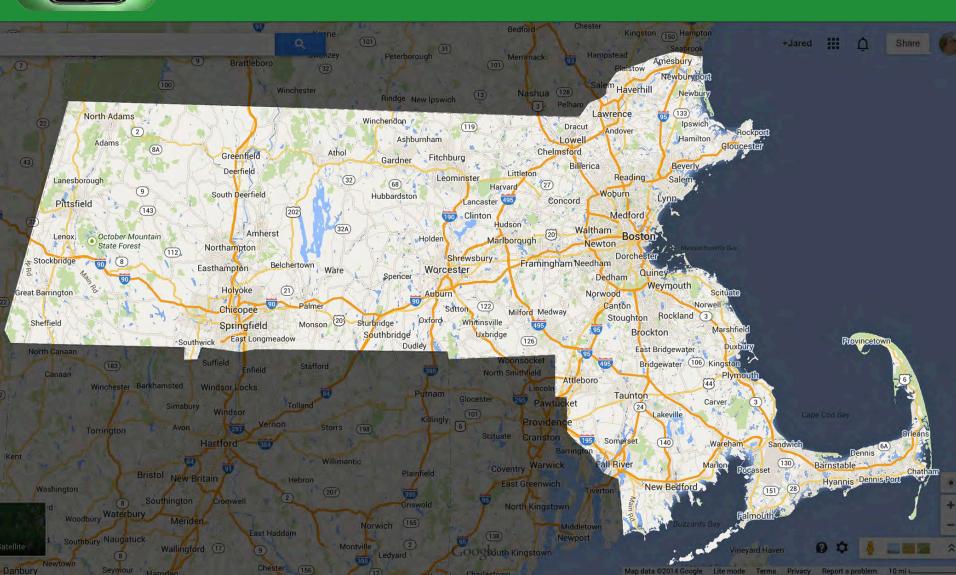
training





H Α N G

N A



Goldspotted Oak Borer (Agrilus auroguttatus)

experiment

experiment

experiment

76 total volunteers (**529** total submissions)

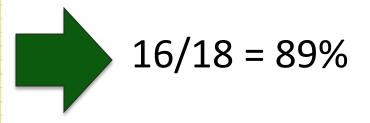
3 groups

$$n = 19$$

$$n = 24$$

$$n = 33$$

hypothesis

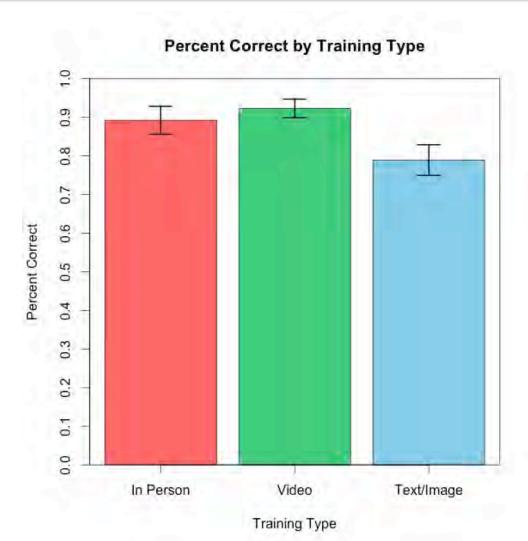


ID Difficulty	<u>Species</u>	In-Person	<u>Video</u>	Text/Images
Easy	Autumn Olive	76%	86%	84%
	Japanese 9 Knotweed Multiflora Rose 9		98%	84%
			96%	98%
Difficult	Exotic Honeysuckles	57%	60%	46%
	Glossy Buckthorn		89%	75%
Total Mean	all species	92%	92%	81%

	А	В	С	D	E	F
1	ID	Subject	User	Location	Date	Correct
2	3061105	Japanese knotweed	001	Hampshire County, Massachusetts	20-Sep-13	1
3	3061106	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
4	3061107	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
5	3061108	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
6	3061109	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
7	3061112	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	0
8	3061113	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
9	3061114	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
10	3061115	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
11	3061116	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
12	3061117	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
13	3061118	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
14	3061121	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
15	3061122	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
16	3061123	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
17	3061124	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
18	3061125	autumn olive	001	Hampshire County, Massachusetts	20-Sep-13	0
19	3065005	multiflora rose	001	Franklin County, Massachusetts	29-Sep-13	1
20	3062309	Japanese knotweed	002	Hampshire County, Massachusetts	23-Sep-13	1
21	3064795	Japanese knotweed	002	Hampshire County, Massachusetts	27-Sep-13	1
22	3064804	autumn olive	002	Hampshire County, Massachusetts	27-Sep-13	1
23	3064805	multiflora rose	002	Hampshire County, Massachusetts	27-Sep-13	1
24	3064806	multiflora rose	002	Hampshire County, Massachusetts	27-Sep-13	1
25	3064807	multiflora rose	002	Hampshire County, Massachusetts	27-Sep-13	1
26	3061207	bush honeysuckles (exotic)	002	Hampshire County, Massachusetts	22-Sep-13	0
27	3061208	multiflora rose	002	Hampshire County, Massachusetts	22-Sep-13	1
28	3061209	multiflora rose	002	Hampshire County, Massachusetts	22-Sep-13	1
29	3061210	autumn olive	003	Hampshire County, Massachusetts	22-Sep-13	1
30	3061211	autumn olive	003	Hampshire County, Massachusetts	22-Sep-13	1
31	3062344	glossy buckthorn	003	Hampshire County, Massachusetts	23-Sep-13	1
32	3045128	glossy buckthorn	004	Middlesex County, Massachusetts	9-Jul-13	1
33	3045158	glossy buckthorn	004	Middlesex County, Massachusetts	9-Jul-13	1
34	3045584	glossy buckthorn	004	Franklin County, Massachusetts	14-Jul-13	1
35	3058774	Japanese knotweed	004	Franklin County, Massachusetts	3-Aug-13	1
36	3060248	Japanese knotweed	004	Franklin County, Massachusetts	2-Sep-13	1
37	3060644	glossy buckthorn	004	Essex County, Massachusetts	11-Sep-13	1
38	3061134	Japanese knotweed	004	Berkshire County, Massachusetts	20-Sep-13	1
39	3064984	glossy buckthorn	004	Franklin County, Massachusetts	29-Sep-13	1

Correct ID Score

n < 5


	Α	В	C	D	E	F
1	ID	Subject	User	Location	Date	Correct
2	3061105	Japanese knotweed	001	Hampshire County, Massachusetts	20-Sep-13	1
3	3061106	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
4	3061107	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
5	3061108	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
6	3061109	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
7	3061112	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	0
8	3061113	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
9	3061114	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
10	3061115	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
11	3061116	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
12	3061117	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
13	3061118	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
14	3061121	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
15	3061122	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
16	3061123	glossy buckthorn	001	Hampshire County, Massachusetts	20-Sep-13	1
17	3061124	multiflora rose	001	Hampshire County, Massachusetts	20-Sep-13	1
18	3061125	autumn olive	001	Hampshire County, Massachusetts	20-Sep-13	0
19	3065005	multiflora rose	001	Franklin County, Massachusetts	29-Sep-13	1
20	3062309	Japanese knotweed	002	Hampshire County, Massachusetts	23-Sep-13	1
21	3064795	Japanese knotweed	002	Hampshire County, Massachusetts	27-Sep-13	1
22	3064804	autumn olive	002	Hampshire County, Massachusetts	27-Sep-13	1
23	3064805	multiflora rose	002	Hampshire County, Massachusetts	27-Sep-13	1
24	3064806	multiflora rose	002	Hampshire County, Massachusetts	27-Sep-13	1
25	3064807	multiflora rose	002	Hampshire County, Massachusetts	27-Sep-13	1
26	3061207	bush honeysuckles (exotic)	002	Hampshire County, Massachusetts	22-Sep-13	0
27	3061208	multiflora rose	002	Hampshire County, Massachusetts	22-Sep-13	1
28	3061209	multiflora rose	002	Hampshire County, Massachusetts	22-Sep-13	1
29						
30						
31						
32	3045128	glossy buckthorn	004	Middlesex County, Massachusetts	9-Jul-13	1
33	3045158	glossy buckthorn	004	Middlesex County, Massachusetts	9-Jul-13	1
34	3045584	glossy buckthorn	004	Franklin County, Massachusetts	14-Jul-13	1
35	3058774	Japanese knotweed	004	Franklin County, Massachusetts	3-Aug-13	1
36	3060248	Japanese knotweed	004	Franklin County, Massachusetts	2-Sep-13	1
37	3060644	glossy buckthorn	004	Essex County, Massachusetts	11-Sep-13	1
38	3061134	Japanese knotweed	004	Berkshire County, Massachusetts	20-Sep-13	1
39	3064984	glossy buckthorn	004	Franklin County, Massachusetts	29-Sep-13	1

	A	В	C
1	Text/Image	Video	In-person
2	0.91	1.00	1.00
3	0.89	1.00	1.00
4	0.94	1.00	0.89
5	0.75	0.83	0.93
6	0.93	1.00	1.00
7	0.54	0.83	1.00
8	1.00	0.83	0.67
9	1.00	1.00	1.00
10	1.00	1.00	0.80
11	0.57	1.00	1.00
12	1.00	0.80	0.60
13	0.67	1.00	1.00
14	0.50	0.60	0.60
15	0.67	1.00	1.00
16	0.83	1.00	- = = Y
17	0.33	1.00	7:
18	1.00	0.80	
19	1.00	T. I.	
20	0.20	1 = 1	
21	0.80		
22	0.80		
23	0.60		
24	0.80		
25	1.00		
26	1.00		

Analysis of Variance (One-Way)

Summary

Groups	Sample size	Sum	Mean	Variance	
Text/Image	25	19.73	0.79	0.05	
Video	17	15.7	0.92	0.01	
In-person	14	12.49	0.89	0.02	

ANOVA

Source of Variation	SS	df	MS	F	p-level	F crit
Between Groups	0.21	2	0.1	3.07	0.05	4.22
Within Groups	1.79	53	0.03			
Total	2.00	55				

VS

Analysis of Variance (One-Way)

Summary

Groups	Sample size	Sum	Mean	Variance	
Text/Image	25	19.73	0.79	0.05	
Video	17	15.7	0.92	0.01	

ANOVA

Source of Variation	SS	df	MS	F	p-level	F crit
Between Groups	0.18	1	0.18	4.97	0.03	5.87
Within Groups	1.47	40	0.04			
Total	1.65	41				

VS

Analysis of Variance (One-Way)

Summary

Groups	Sample size	Sum	Mean	Variance	
Text/Image	25	19.73	0.79	0.05	
In-person	14	12.49	0.89	0.02	

ANOVA

Source of Variation	SS	df	MS	F	p-level	F crit
Between Groups	0.1	1	0.1	2.26	0.14	5.91
Within Groups	1.57	37	0.04			
Total	1.66	38				

VS

Analysis of Variance (One-Way)

Summary

Groups	Sample size	Sum	Mean	Variance	
Video	17	15.7	0.92	0.01	
In-person	14	12.49	0.89	0.02	

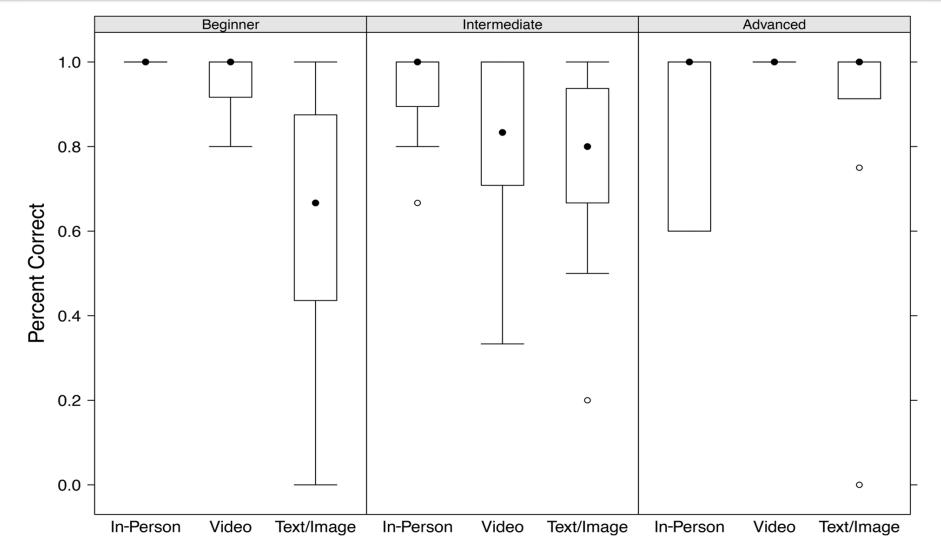
ANOVA

Source of Variation	SS	df	MS	F	p-level	F crit
Between Groups	0.01	1	0.01	0.39	0.54	6.06
Within Groups	0.55	29	0.02			
Total	0.01	1	0.01	0.39		

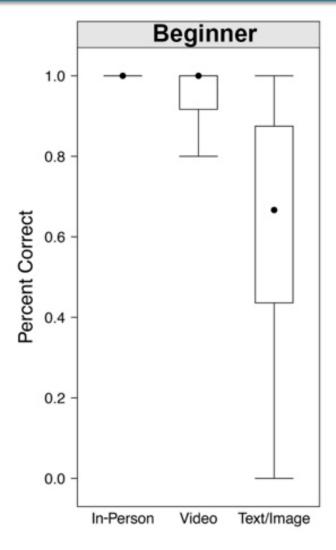

Beginner

Intermediate

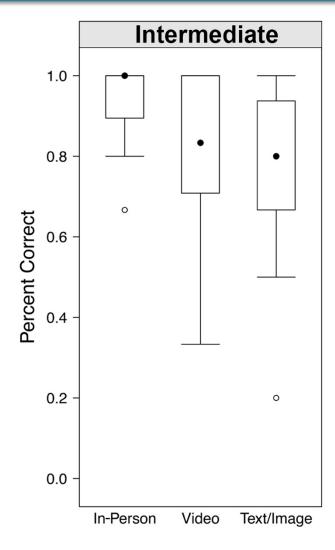
Advanced



Generalized Linear Model

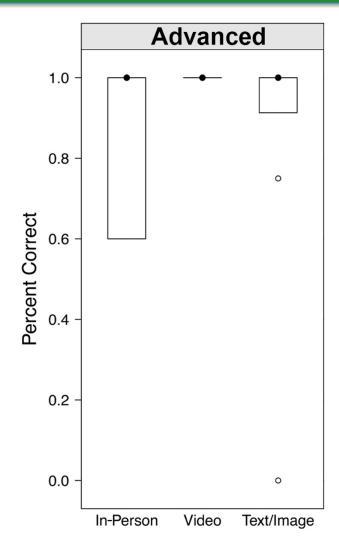

% Correct ~
Training * Experience

```
> Mglm1= glm (cbind(numCorrect, numFail) ~ factor(Train.typ)*factor(Plant.id),
+ family=binomial, data=PeopleResults)
> summary(Mglm1)
Call:
alm(formula = cbind(numCorrect, numFail) ~ factor(Train.typ) *
    factor(Plant.id), family = binomial, data = PeopleResults)
Deviance Residuals:
   Min
                  Median
                                       Max
-2.9282 -0.6992
                  0.1905
                           1.0165
                                    3.0747
Coefficients:
                                     Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                       0.7282
                                                  0.3254 2.238 0.025240 *
factor(Train.typ)2
                                       2.7217
                                                  0.7885
                                                         3.452 0.000557 ***
factor(Train.typ)3
                                      18.1162 1935.6071
                                                         0.009 0.992532
factor(Plant.id)2
                                                         1.753 0.079671 .
                                       0.7006
                                                  0.3998
                                       1.4690
                                                  0.5144 2.856 0.004296 **
factor(Plant.id)3
factor(Train.typ)2:factor(Plant.id)2
                                      -2.5973
                                                  0.8865 -2.930 0.003391 **
factor(Train.typ)3:factor(Plant.id)2 -16.8941 1935.6072
                                                         -0.009 0.993036
factor(Train.typ)2:factor(Plant.id)3
                                      13.6715 1407.7355
                                                           0.010 0.992251
factor(Train.typ)3:factor(Plant.id)3 -18.0888 1935.6072 -0.009 0.992544
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 146.28 on 75 degrees of freedom
Residual deviance: 107.54 on 67 degrees of freedom
AIC: 197,23
Number of Fisher Scoring iterations: 16
```


```
> Mglm.begin= glm (cbind(numCorrect, numFail) ~ factor(Train.typ),
+ family=binomial, data=PeopleResults[PeopleResults$Plant.id==1,])
> summary(Mqlm.begin)
Call:
qlm(formula = cbind(numCorrect, numFail) ~ factor(Train.typ),
    family = binomial, data = PeopleResults[PeopleResults$Plant.id ==
        1, ])
Deviance Residuals:
              10
                  Median
    Min
                               30
                                       Max
-1.7072 -1.1049
                  0.1652
                           0.5847
                                    3.0747
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                     0.7282
                                0.3254
                                         2.238 0.025240 *
factor(Train.typ)2
                     2.7217
                                0.7885
                                        3.452 0.000557 ***
factor(Train.typ)3
                    19.1162 3191.2766
                                         0.006 0.995221
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 46.959 on 15 degrees of freedom
Residual deviance: 23.999 on 13 degrees of freedom
AIC: 42.827
```

Number of Fisher Scoring iterations: 17




```
> Mglm.inter= glm (cbind(numCorrect, numFail) ~ factor(Train.typ),
+ family=binomial, data=PeopleResults[PeopleResults$Plant.id==2,])
> summary(Mglm.inter)
Call:
glm(formula = cbind(numCorrect, numFail) ~ factor(Train.typ),
    family = binomial, data = PeopleResults[PeopleResults$Plant.id ==
        2, ])
Deviance Residuals:
                     Median
     Min
                10
                                    3Q
                                             Max
-2.92824 -0.66254
                     0.05152
                               1.33170
                                         1.73239
Coefficients:
                   Estimate Std. Error z value Pr(>|z|)
(Intercept)
                     1.4289
                                0.2322
                                         6.155 7.52e-10 ***
factor(Train.typ)2
                     0.1245
                                0.4050
                                         0.307
                                                 0.7586
factor(Train.typ)3
                     1.2220
                                0.4820
                                         2.535
                                                 0.0112 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 64.915 on 40 degrees of freedom
Residual deviance: 56.858 on 38 degrees of freedom
AIC: 111.97
```

Number of Fisher Scoring iterations: 5


```
> Mglm.exp= glm (cbind(numCorrect, numFail) ~ factor(Train.typ),
+ family=binomial, data=PeopleResults[PeopleResults$Plant.id==3,])
> summary(Mglm.exp)
Call:
glm(formula = cbind(numCorrect, numFail) ~ factor(Train.typ),
    family = binomial, data = PeopleResults[PeopleResults$Plant.id ==
        3, ])
Deviance Residuals:
                     Median
     Min
                10
                                    30
                                             Max
-2.14597
          0.00016
                    0.64919
                               1.01982
                                         1.97506
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
(Intercept)
                      2.1972
                                 0.3984
                                          5.515 3.49e-08 ***
                    17.3933
                             2320.9631
                                          0.007
factor(Train.typ)2
                                                   0.994
factor(Train.typ)3
                      0.0274
                                 0.6601
                                          0.042
                                                   0.967
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 30.853 on 18 degrees of freedom
Residual deviance: 26.681 on 16 degrees of freedom
AIC: 42.436
```

Number of Fisher Scoring iterations: 17

conclusions

next steps

next steps

next steps

get it!

get it!

thanks!

ECOSYSTÊM HEALTH

WARNELL SCHOOL OF FORESTRY AND NATURAL RESOURCE COLLEGE OF AGRICULTURAL
AND ENVIRONMENTAL SCIENCES

Protecting nature. Preserving life.™

Outsmart Invasive Species project is funded through a grant (11-DG-11420004-294) from the Northeastern Area State and Private Forestry program, USDA Forest Service. Database management and app development by Chuck Bargeron, University of Georgia.

masswoods.net/outsmart